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■ Abstract The normal milieu of the kidney includes hypoxia, large osmotic fluxes,
and an enormous amount of fluid/solute reabsorption. Renal adaptation to these con-
ditions requires a host of molecular chaperones that stabilize protein conformation,
target nascent proteins to their final intracellular destination, and prevent protein ag-
gregation. Under physiologic or pharmacologic stress, inducible molecular chaperones
provide additional mechanisms for repairing or degrading non-native proteins and for
inhibiting stress-induced apoptosis. In contrast to intracellular chaperones, chaperones
present on the cell surface regulate the immune system and have cytokine-like effects.
A diverse range of chaperones and chaperone functions provide the renal cell with an
armamentarium of responses to improve the chances of survival.

INTRODUCTION

The normal kidney offers a challenging milieu. Despite a filtration volume of
160–180 liters each day, only 1–2 liters of urine are excreted. Over 98% of
the glomerular filtrate must be reabsorbed. The work of solute and fluid re-
absorption requires substantial aerobic energy production and extracts a large
amount of oxygen from the blood stream. Due in part to the high oxygen ex-
traction ratio and the countercurrent mechanism required for urinary concentra-
tion, the medulla operates on the brink of hypoxia (1). In humans the renal inner
medullary cells are chronically exposed to a relatively hyperosmotic interstitium,
and during changes in hydration state, these cells can experience wide swings
in the osmolality ranging from 50 to 1200 mOsm. Thus even under normal cir-
cumstances, the kidney experiences a substantial level of stress. The kidney is
also exposed to a variety of disease states and adverse challenges such as hy-
poxia, energy deprivation, and toxins that can compromise cell survival. To adapt
to stressful conditions, kidney cells, like cells of all living organisms, utilize
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inducible cytoprotective mechanisms involving molecular chaperones or stress
proteins.

The stress response has been extensively reviewed elsewhere (2–6). Using in-
formation obtained from recent investigations, the present review focuses on the
role of molecular chaperones in mediating common physiologic and chemical
insults that alter renal epithelial cell function. These insults include ischemia,
nephrotoxin exposure, glomerulonephritis, kidney transplantation, and osmotic
stress. Individual molecular chaperones that modulate cell injury during stress
and/or recovery are discussed with an emphasis on the their mechanism(s) of
action.

STRESS PROTEINS: A HISTORICAL PERSPECTIVE

In 1962, Ferruccio Ritossoa observed a characteristic puffing of the specific chro-
mosomes after subjecting isolatedDrosophilasalivary glands to temperature shock
(7). Twelve years later, Tissieres and colleagues noted that the de novo synthesis
of only six prominent proteins (i.e., heat shock proteins) accounted for 30% of the
total new protein synthesis in the salivary glands of heated larvae (8). Subsequent
studies characterized many heat shock proteins that are divided into families based
primarily on their molecular mass. These include HSP 20–30, HSP 50–60, HSP 70
(including HSP 68–78 kDa), HSP 90, and HSP 100–110 kDa. Stress proteins are
arbitrarily designated as constitutively expressed (cognate stress proteins) or stress-
inducible, although constitutively expressed HSPs can be modestly up-regulated
and inducible HSPs may be constitutively expressed (9). Constitutively expressed
stress proteins participate in normal cell maintenance. In contrast, accumulation
of inducible stress proteins requires an acute stress.

ROLE OF MOLECULAR CHAPERONES
IN NORMAL RENAL FUNCTION

Stress proteins serve diverse functions (Table 1). In the kidney, their best-character-
ized role is that as a molecular chaperone (Figure 1). As the term implies, a molec-
ular chaperone binds various protein substrates, particularly nascent polypeptides
and proteins, in a non-native (denatured) conformation. It is now recognized that
the primary amino acid sequence is not sufficient to determine tertiary protein
structure. A host of molecular chaperones, present in multiple cellular compart-
ments, work in a coordinated and substrate-specific fashion to produce a protein
in its final conformation (10). Chaperones present in the endoplasmic reticulum
stabilize and fold peptide intermediates (11). Cytosolic chaperones exert quality
control in assuring that nascent proteins achieve their mature conformation. Molec-
ular chaperones also collaborate in the maturation of signal transducing proteins
including the steroid receptor (12) and protein kinases (13). To deliver newly
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TABLE 1 Stress proteins and their diverse functions

Housekeeping functions
Fold proteins into native conformation
Assemble multimeric complexes
Deliver proteins across organelle membranes (“unfoldase”)
Facilitate degradation of malformed proteins
Uncoat clathrin-coated vesicles (after endocytosis)

Stress functions
Repair denatured proteins
Prevent protein aggregate formation
Facilitate degradation of severely damaged proteins
Deliver replacement proteins to target organelles
Inhibit cell death (apoptosis)
Stabilize the cytoskeleton
Repair nuclear DNA damage

Immune modulating functions
Stimulate immune system (cytokine-like function)
Act as target for generating auto-antibodies
Induce apoptosis

Figure 1 Functional roles of renal molecular chaperones. The roles of stress proteins
in the kidney include both chaperone and non-chaperone functions. Constitutively ex-
pressed stress proteins fulfill most of these functions under normal circumstances. To
enhance resistance to injury and improve cell survival during physiologic or pharma-
cologic stressors, inducible stress proteins accumulate in the kidney.
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synthesized proteins destined for organelles, chaperones maintain peptides in an
unfolded state, traffic the peptides across biologic membranes, and then orches-
trate re-folding within the lumen (14). Protein complexes made up of multimers
are assembled in the cytosol with the assistance of chaperones (10). Most or-
ganelles possess unique sets of molecular chaperones. Many of these chaperones
coordinate the final re-folding of peptides that cross their membranes (15). This
assembly line process assures final delivery of the mature protein to its destination.
Importantly, these chaperones also prevent newly synthesized proteins from form-
ing large and potentially toxic aggregates (14, 16–18). The burden of unfolded or
denatured proteins appears to be an important sensor for regulating the synthesis
of molecular chaperones. In the kidney, chaperones mediate effective binding of
mineralocorticoid to its receptor. HSP 90 has been directly implicated in this pro-
cess (19). Members of the HSP 70 family assist in re-cycling of clathrin-coated
vesicles involved in the endocytosis and transport of hormone receptors, glucose,
and other molecules (20).

When proteins exist in a non-native state due to an error in synthesis or an
adverse stress, molecular chaperones attempt either to refold and repair the non-
native protein or to facilitate its degradation (10, 21, 22). The function of stress
proteins extends beyond those of a protein chaperone. Intracellular accumulation
of stress proteins inhibits apoptosis (23–28). In contrast, expression of the same
stress proteins on the cell surface can precipitate cell death (29, 30), activate the
immune system (3, 31), or serve as a target for the generation of autoantibodies
in systemic autoimmune disease (32–34). These observations demonstrate that
the effects of stress proteins are highly variable and may be stress and cell-type
specific.

Induction of the Cellular Stress Response

Hundreds of diverse stimuli have been shown to stimulate the induction of molec-
ular chaperones (35). Changes in intracellular pH, temperature, reduced ATP con-
tent, hypoxia, infection, cancer, exposure to radiation or toxins, or even non-toxic
drugs have all been shown to illicit the stress response. Surprisingly, cold-shock
also induces molecular chaperones (4). Although each stimulus could operate
through a unique biochemical pathway, several investigators conceptualize pro-
tein denaturation as a unifying model for the cellular stress response (16, 36). In
this model, misfolded proteins tend to self-aggregate into larger, nonfunctional
protein complex proteins or aggresomes (17). This model system appears to be
highly consistent with the mechanism for inducing HSP 70 (72 kDa), the best char-
acterized of the inducible stress proteins. Denaturation of intracellular proteins,
especially those proteins that tend to form large complexes, is a potent stimulus
for up-regulating HSP 72 (37). Constitutively expressed molecular chaperones
(e.g., HSP 73 kDa or HSC 70) appear to act as a quality control mechanism for
recognizing nascent proteins with normal conformation (10, 14, 38). Several chap-
erones cooperate with HSP 70 members to stabilize intrinsically unstable folding
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intermediates. These co-chaperones include HSP 40, HSP 60, and HSP 90 (10, 39).
The presence of both constitutive and inducible chaperones permits a flexible
response that exhibits substrate, cell, and stress specificity (40).

When confronted with an increased burden of non-native proteins, the cellu-
lar stress response is activated (41). Once induced, molecular chaperones have the
onerous task of distinguishing irreparably damaged proteins from those that can be
refolded (21). Substantial evidence suggests that selected enzymes can be success-
fully refolded by molecular chaperones after partial denaturation (21, 42). Proteins
that cannot be refolded are destined to be degraded either by lysosomes (38) or
by a ubiquitin-mediated proteolysis pathway (22, 43). HSP 70 members have been
shown to facilitate both processes of protein degradation (43). Although the conse-
quences of accumulating denatured intracellular proteins is poorly characterized,
denatured proteins have the potential to cause injury, referred to as proteotoxicity
(16).

The cytoprotection afforded by molecular chaperones represents a potentially
elegant and complex system. Renal cells, like the cells of other organs, possess an
array of compartment-specific chaperones capable of responding to alterations in
protein conformation (44). Both the inducible and constitutively expressed chap-
erones have numerous isoforms, demonstrate distinct peptide-binding preferences
(45), and exhibit stimulus specificity (46). Furthermore, different regions of a sin-
gle chaperone (e.g., HSP 72) may be critical for mediating cytoprotection against
a specific insult (25, 47). In some circumstances, the ATPase region of the chaper-
one is required to permit high-affinity substrate binding and to mediate release of
the repaired peptide, a process referred to as the chaperone function (25). In other
cases, non-chaperone domains are equally effective cytoprotectants (25).

In sum, the essential purpose of constitutively expressed molecular chaperones
is to assure that nascent polypeptides achieve their native conformation, to target
delivery of newly synthesized proteins across biologic membranes and to facilitate
the timely degradation of misfolded proteins. In contrast, the inducible molecular
chaperones improve the likelihood of cell survival following a noxious insult. A
host of diverse renal diseases have been associated with the induction of molecular
chaperones (Table 2). The protective effects of molecular chaperones in renal
disease are mediated by one or more potential mechanisms (Table 3).

Renal Ischemia/ATP Depletion

Ischemia, often resulting from a transient decrease in blood flow, is a common
cause of acquired renal failure. Ischemic renal injury frequently occurs in the pre-
sence of hypovolemia, hypotension, sepsis, cardiopulmonary bypass, and during
renal transplantation. Both ischemia of the intact kidney and ATP depletion in
vitro (a surrogate model for ischemia) result in characteristic changes in renal
epithelial cell morphology (48–50). In vivo, the most dramatic changes are ob-
served in epithelial cells within the S3 segment of the proximal tubule (51). Alone
or in combination, collapse of the actin cytoskeleton, loss of cell-cell contact,
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TABLE 2 Role of molecular chaperones in renal
disease

Disease state Reference

Glomerulonephritis (3, 122, 123, 125)

Obstruction (113, 116, 117)

Interstitial nephritis (123)

Ischemia

Nephrotoxins (111)
Heavy metals

Cadmium (73, 153, 154)
Mercury (106, 109)
Cisplatin
Iron (112)

Antibiotics
Gentamicin (104, 105, 155)

Hypoxia (156)
Renal Transplantation

Ischemia (87)
Rejection (136, 137)

and disruption of cell adhesion to the substratum cause epithelial cell dysfunc-
tion (52, 53). Cell polarity is disrupted and as a result, Na+,K+-ATPase, normally
restricted to the basolateral membrane, is re-distributed (54, 55), thereby compro-
mising vectoral solute transport (54). Loss of cell-cell contact permits paracellular
backleak, one cause of decreased renal function (53). Intact and/or necrotic cells
form casts that obstruct tubular flow and exacerbate renal dysfunction (48, 50). In
addition to cytoskeletal and cell contact sites, mitochondria are a primary target
for ischemic or ATP depletion-mediated injury (49, 56). Both mitochondrial injury
(57) and loss of cell contact sites (58) precipitate apoptosis, a primary form of cell
death after transient renal ischemia (28, 59).

TABLE 3 Potential cytoprotective pathways mediated by
chaperones

Site of action Reference

Endoplasmic Reticulum
Glucose-regulated proteins (GRP78 or BiP)

Bind misfolded ER proteins (11, 24)
Promote degradation of misfolded proteins (38, 69)
Prevent calcium redistribution (24)
Inhibit oxidant stress (24)
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TABLE 3 (Continued)

Site of action Reference

Calnexin/calreticulin
Protein folding/assembly (10)
Maturation of glycoproteins (10)

Cytosol
HSP 90

Translocate cell surface receptors (10)
Regulate apoptosis (157)
Assemble enzyme complexes (10)

HSP 70 (72 and 73 kDa)
Re-fold damaged proteins (10)
Prevent protein aggregation (21)
Facilitate protein degradation (22)
Replace damaged organelle proteins (15)
Stabilize actin cytoskeleton (77, 78)
Stabilize centrosome, microtubules (158)
Re-establish cell polarity (55, 159)
Regulate protein kinase(s) (e.g., c-Src) (234)
Act as a cytokine-like molecule (31)
Regulate the cell cycle (160, 161)
Mediate inflammatory response (111)

Suppress apoptosis
Inhibit caspase activation (162)
Prevent apoptosome assembly (163)
Inhibit JNK activation (23)
Augment Bcl-2 effect (28)
Inhibit TNF action (164)
Inhibit FAS-Fas-ligand effect (164)
Augment apoptosis in damaged cells (137)

HSP 47
Regulate collagen processing (104)
and deposition (125)

HSP 27
Stabilize cytoskeleton (microfilaments,
intermediate filaments) (158)

Prevent nuclear protein aggregation (165)
Inhibit apoptosis (166)

Osmotic stress protein 94
Molecular protein chaperone? (149)

Mitochondria
Mitochondrial HSP 70 (mt70) (44)
Protein translocation into mitochondria (167)

Chaperonin 60 (cpn60)
Protein translocation into mitochondria (15, 158)
Fold proteins into native conformation (15)
Re-fold damaged proteins (42)
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Substantial evidence suggests that molecular chaperones participate in ischemic
injury and repair. Within hours after even brief renal ischemia, enhanced expression
of several molecular chaperones, including the cytoprotectant protein HSP 72,
is observed (60). HSP 72 is the major inducible molecular chaperone found in
virtually all mammalian cells. HSP 72 localizes to the cytosol in quiescent cells
but rapidly accumulates in nucleoli after stress (61), a pattern observed in most
eukaryotic cells (62). During recovery from ATP depletion, HSP 72 translocates
to the cytosol where its content exceeds the pre-stress level (63). Expression of
HSP 72 is most robust in the inner medulla (60), the region of the kidney least
susceptible to ischemic injury (51). Increased expression of HSP 72 is likely to
be precipitated by stress-induced aggregation of cytoskeletal proteins including
actin (36). ATP depletion (perhaps by perturbing protein conformation) has been
shown to stimulate HSF-1, a major transcriptional factor that regulates HSP 72
expression (64). Akcetin and colleagues recently demonstrated that two HSP-70
genes coding for HSP 72 respond to renal ischemia. HSP 70-1 increased after
brief renal ischemia, whereas HSP 70-2 increased after more prolonged ischemic
stress (65), suggesting that the kidney has a sophisticated stress response system.
In order to respond to cell stress, it is likely that HSP 72 requires co-chaperones
and regulatory factors including HSP 40 (66), BAG-1 (67), Hip-Hop (12), and
others. Although less robust than the HSP 72 response, renal ischemia alters the
expression and/or intracellular distribution of other chaperones such as HSP 25,
HSP 73, HSP 90, and GRP 78 (BiP).

A host of resident molecular chaperones in the endoplasmic reticulum (ER)
assist with routine protein folding (68). After stress, some of these chaperones
are up-regulated. GRP 78, an ER member of the HSP 70 family, is induced by
stressors that precipitate protein denaturation (69). Interestingly, selective induc-
tion of ER chaperones using tunicamycin or A23187 protects against subsequent
cell membrane injury caused by ATP depletion (70). These important observations
demonstrate that perturbations in protein conformation accompany ischemic stress
and that molecular chaperones in the ER are key mediators of protein repair.

HSP 25, an actin-stabilizing protein, normally localizes to the brush border
of cortical renal tubules. After transient ischemia, HSP 25 accumulates in a cell
fraction of kidney homogenates that also contains cytoskeletal proteins (71). This
finding was substantiated by the observation that HSP 25 is constitutively expressed
in the kidney in a detergent-soluble protein fraction but reversibly accumulates in
the detergent-insoluble fraction during 45 min of ischemia (72). Under basal con-
ditions, HSP 25 co-localized with microfilamentous actin in the brush border but
exhibited a diffuse cytosolic pattern similar to the distribution of actin aggregates
during ischemia and recovery, supporting the hypothesis that HSP 25 participates
in stabilizing or repairing the actin cytoskeleton after an ischemic insult (71, 72).
After ischemia in vivo, HSP 25 andα-B crystallin, another small molecular weight
HSP, accumulate in the cytosol of the proximal tubule (73).

In contrast to the rapid and dramatic changes in HSP 25 and HSP 72 that
accompany renal ischemia, HSP 73 and HSP 90 do not exhibit marked alterations in
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distribution or expression. No acute changes in HSP 73 or 90 were observed in ATP-
depleted renal epithelial cells (63). In the intact kidney, HSP 73 modestly increased
3–6 days after ischemia, whereas HSP 90 accumulation peaked during days 5–7,
suggesting that these HSPs may participate in the renal repair process (74). HSP
90 operates much like HSP 72 with regard to its dependence upon ATP hydrolysis
to function as a chaperone (75). HSP 90 is often found in complexes that contain
HSP 70, suggesting that the two chaperones cooperate in repairing non-native
proteins (39, 40). HSP 90 also exerts an important role in the maturation process
of protein tyrosine kinases including c-Src (13). c-Src regulates the assembly of
key structural proteins that maintain cell contact sites (13). The role of HSP 90 in
modulating protein kinase activity after ischemic stress has not been reported.

Elegant studies showed that HSP 70 members have three distinct functional do-
mains: a C-terminal peptide recognition and binding site, a short linking sequence,
and an N-terminal ATPase domain (76). Tsang generated a novel hypothesis that
the ATPase domain of HSP 70 binds to and stabilizes actin (77). Proximity be-
tween HSP 70 and actin in oxidant-stressed cells has been shown using electron
microscopy (78). In renal and non-renal cells, a variety of stressors precipitate
the formation of large cytosolic aggregates that contain actin, structural proteins,
and HSP 72 (36, 79). In renal epithelial cells, prior heat stress, sufficient to in-
duce HSP 72, ameliorates collapse of the actin cytoskeleton during ATP depletion
(53). Either as a result of improved actin stability or via an independent mecha-
nism, accumulation of HSP 72 is also associated with improved integrity of the
tight junction (53). A recent observation suggests that HSP 72 may interact with
c-Src in ATP-depleted renal cells (80). By mediating the activity or distribution
of protein kinases such as c-Src, HSP 72 could alter protein tyrosine phosphory-
lation of key regulatory proteins that mediate cell contact sites (81). Changes in
cell-cell and cell-substrate adhesion have important implications in the pathogen-
esis of acute renal failure. HSP 72 may assist in the restoration of epithelial cell
polarity after an ischemic insult. Na+,K+-ATPase, a membrane protein respon-
sible for vectoral solute transport, is lost from the basolateral cell surface when
integrity of the junctional complex is compromised (55). HSP 72 co-localizes with
the Na+,K+-ATPase and appears to facilitate its re-insertion into the proper target
membrane in an ATP-dependent manner (79). Together, these studies suggest that
HSP 72 is important for stabilizing and repairing cell structures that are critical for
maintaining epithelial cell function. A recent study has also implicated HSP 25 in
preserving microfilamentous actin in the post-ischemic rat renal cortex (72).

Renal cells subjected to ischemia or ATP depletion undergo apoptosis (57–59).
Maneuvers that increase HSP 72 content inhibit apoptotic cell death after diverse
stresses (23, 25, 28, 41, 82, 83). HSP 72 inhibits Jun N-terminal kinase (JNK), a
stress-activated kinase, from initiating the apoptotic pathway in non-renal cells
subjected to heat stress (23). A similar effect of HSP 72 was shown after protea-
some inhibition, another cause of apoptosis (26). The ATPase domain appears to
be unnecessary for prevention of JNK-mediated apoptosis after UV irradiation or
exposure to interleukin-1, suggesting that cytoprotection is independent of protein



11 Jan 2002 10:38 AR AR148-17.tex AR148-17.sgm LaTeX2e(2001/05/10)P1: GJC

512 BORKAN ¥ GULLANS

re-folding (47). Recent work by Meriin et al. showed that stress-induced activation
of JNK is caused by the inhibition of the phosphatases that dephosphorylate and de-
activate JNK (41). HSP 72 antagonizes the effect of stress on phosphatase activity,
thereby promoting the deactivation of JNK (41). The anti-apoptotic effects of HSP
72 are not limited to JNK inhibition; however, the chaperone function of HSP 72 is
required for inhibiting the activation of pro-apoptotic proteases (procaspases 9 and
3) after lethal heat stress (25). In vitro, HSP 70 also interferes with the assembly of
the apoptosome, a complex comprised of cytochromec, apoptosis-activating fac-
tor (APAF-1), and procaspase 9 (83). In ATP-depleted renal epithelial cells, HSP
72 binds Bcl-2, an anti-apoptotic protein and increases the Bcl-2:BAX ratio (28),
a determinant of the apoptotic setpoint or rheostat in stressed cells. Importantly,
the cellular distribution of HSPs (such as HSP 70) could determine a cell’s fate.
Up-regulation of HSP 70 in the cytosol or nucleus appears to be cytoprotective,
whereas expression on the cell’s surface may initiate cell destruction by the im-
mune system (3, 29). In addition to HSP 70, the potential contribution of the small
HSPs (e.g., HSP 25–27) as regulators of the apoptotic pathway has recently been
recognized (84).

To date, attempts to enhance resistance to ischemic injury in the intact kidney
by up-regulating HSP 72 in situ have been inconsistent. Joannidis and colleagues
failed to show protection from tubular necrosis in the isolated perfused kidney
after subjecting the intact rat to whole-body hyperthermia (85). Although renal
ischemia in the intact rat protected against subsequent hypoxic damage in a sus-
pension of proximal tubule, the resistance to injury did not correlate with HSP
72 content (86). In contrast, others showed that subjecting the isolated kidney to
hyperthermia prior to transplantation increases HSP 72 and decreases ischemic
injury (87). In myocardial cells, HSP 72 accumulation affords consistent cytopro-
tection against ATP depletion and ischemia. In addition, selective overexpression
of HSP 72 protected against cardiac ischemia in a transgenic mouse (88). Phar-
macologic approaches have been attempted to induce stress proteins and improve
cytoresistance to ischemic injury. Bimoclomol, an hydroxylamine derivative, in-
creases expression of HSPs without significant toxicity and protects mice against
ischemic tissue injury (89). Nontoxic methods for inducing molecular chaperones
in the kidney hold promise for improving renal epithelial resistance to anticipated
episodes of ischemia.

Nephrotoxin Exposure

Acute renal failure is a well-recognized complication of exposure to intravenous
contrast agents, nephrotoxic antibiotics, heavy metals, or a variety of chemother-
apeutic agents (e.g., cisplatin). The mechanisms of cytotoxicity appear to differ
for these insults. Intravenous contrast agents may be directly toxic to renal epithe-
lial cells (90) and can precipitate vasoconstriction, an important cause of cellular
ischemia (91). Heavy metals target the mitochondria (92) and cause protein de-
naturation (93). Cisplatin induces both renal epithelial cell apoptosis and necrosis
in a dose-dependent manner (94, 95).
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Although cisplatin-induced apoptosis has been assumed to be the direct result
of DNA damage (96, 97), other pathways may contribute to cell death. Activa-
tion of the Fas/Fas-L system by cisplatin can promote apoptotic renal cell death
(98). Cisplatin activates interleukin-1β-converting enzyme (ICE) proteases in
the apoptotic cascade (99). Recently, cisplatin-mediated phosphorylation ofα-
adducin, an actin-capping protein, was shown to precede caspase activation (100).
Once activated, however, caspase 3 led to irreversible cleavage ofα-adducin. This
observation suggests that the actin stress fibers and focal adhesions might be ad-
ditional target sites for cisplatin-mediated apoptosis in renal cells (100). Although
HSP 72 content did not increase after exposure to cisplatin, the distribution to
the nucleus was dramatically altered in HeLa cells (97). Several studies demon-
strated that molecular chaperones increase cytoresistance to nephrotoxic injury.
In noncancerous renal cells, resistance to cisplatin-induced cell death was ob-
served in transfected epithelial LLC-PK1 cells that overexpressed HSP 72 (103).
The ability of HSP 72 to regulate cisplatin-induced apoptosis is not surprising
given that HSP 72 inhibits multiple steps in the apoptotic pathway (27, 28, 41).
An increase in HSP 70 content may alter the prognosis for renal cell carcino-
mas (101), perhaps by altering the sensitivity of cancer cells to chemotherapeutic
drugs (102).

Exposure to gentamicin, a nephrotoxic antibiotic known to cause acute tubular
necrosis, induces the expression of renal molecular chaperones. Increased ex-
pression of HSP 47 and HSP 73 was observed in rat kidneys after subcutaneous
injection of gentamicin (104). Accumulation of HSP 47 was maximal at day 3,
several days after the appearance of ATN. In this same study, HSP 47 immuno-
staining was most abundant in the tubular epithelial cells and interstitial cells in
the regions of collagen III deposition, suggesting that HSP 47 may participate
in interstitial repair or fibrosis (104). In contrast, HSP 73 rapidly accumulated
within lysosomes of damaged proximal tubular epithelial cells after gentamicin
exposure (105), suggesting that this chaperone may facilitate lysosomal protein
degradation.

Heavy metals such as mercuric (HgCl2) or cadmium chloride (CdCl2) cause
marked toxicity to renal cells. Heavy metals also induce the synthesis of molecu-
lar chaperones. Although heavy metals cause protein denaturation (93), a potent
stimulus for chaperone induction (37), other events may contribute. Exposure of
LLC-PK1 cells to HgCl2 generates a substantial oxidant stress from endogenous
hydrogen peroxide that originates, at least in part, from damaged mitochondria
(106). In addition to mitochondrial injury, the lysosomal proton gradient required
for normal protein degradation is disrupted (106). The protective effect afforded
by overexpressing anti-apoptotic genes of the Bcl-2 family against CdCl2 injury
suggests a central role of mitochondrial injury caused by CdCl2 (106, 107). As
a response to either mitochondrial injury or the protein-damaging effects of hy-
drogen peroxide, molecular chaperones are induced. An increase in the de novo
synthesis of both HSP 72 and HSP 90 was observed in slices of rat kidney after
heavy metal exposure (108). Even a single dose of HgCl2, sufficient to induce
only single epithelial cell necrosis, induced HSP 72 in the rat renal cortex (109).
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However, accumulation of HSP 72 was most abundant in undamaged distal con-
voluted cells, making its role in proximal tubular cell injury less clear in this study.
Other investigators detected HSP 65 and HSP 72 in cortical tubules with the most
overt histologic injury (110). In the later study, immunoelectron microscopy of
severely damaged cells showed abundant HSP 65 in mitochondria and nucleoli,
whereas HSP 72 was overexpressed in the cytoplasm, mitochondria, lysosomes,
the cytoskeleton, and in the nucleus (110). Activation of T lymphocytes may also
contribute to the inflammatory process that causes chronic interstitial nephritis.
After prolonged exposure to cadmium, kidney-derived T cells were capable of
inducing interstitial nephritis after passive transfer to cadmium-exposed mice be-
fore the onset of overt nephritis (111). These investigators suggested that HSP 70
is an important target for T cell–mediated inflammation and chronic renal injury.
Increases in HSP 90 within the renal proximal renal tubule have also been reported
after exposure to toxic doses of iron (112).

Obstructive Nephropathy

Urinary tract obstruction is a common cause of both acute and chronic renal dys-
function. Obstruction produces interstitial renal injury with inflammation and pro-
motes chronic apoptosis with progressive renal failure and interstitial fibrosis (113–
115). Unilateral obstruction in the rat is associated with an increase in HSP 72 only
in the obstructed kidney (113, 116, 117), possibly resulting from localized renal
oxidant stress kidney (116). In addition, HSP 47, a collagen-binding stress pro-
tein, accumulates in the mouse kidney after unilateral obstruction (118). HSP 47
mRNA expression is increased within 12 h of acute obstruction (118). In this study,
administration of either an AII receptor antagonist or an ACE inhibitor decreased
HSP 47 and type I collagen mRNA levels by∼60% and prevented interstitial
fibrosis. These observations support the hypothesis that interstitial fibrosis after
urinary tract obstruction involves molecular chaperones and may be amenable to
therapeutic treatment.

Glomerulonephritis (GN) and Immune-Mediated Injury

Glomerular injury represents a balance between insults delivered by infiltrating
leukocytes and platelets that elaborate damaging cytokines, eicosanoids, comple-
ment, and oxygen radical species and the ability of the glomerulus to resist injury
(119). Noxious stimuli result in vascular injury, alterations in basement membrane
composition, damage the glomerular epithelial cell and podocytes, stimulate cell
proliferation and, ultimately, precipitate glomerular fibrosis.

Stress proteins may be an important component of resistance to glomerular
injury. The presence of constitutive and inducible stress proteins has been demon-
strated in animal kidneys with experimental GN (120–122). An increase in stress
proteins was detected in human kidneys with various forms of acute GN (120, 123–
125). Proteinuria, a potential cause of renal tubular injury that often accompanies
GN, increases the expression of HSP 72 (123). The presence of protein in the
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tubular lumen was increased with pro-apoptotic stimuli, including tumor necrosis
factor (TNF), a potent initiator of apoptosis (126). In non-renal cells, the selective
overexpression of HSP 72 blocks TNF-induced cell death (127).

Stress proteins have also been implicated in the pathogenesis of autoimmune
diseases including systemic lupus erythematosis. In the kidney, molecular chaper-
ones may serve as antigenic targets for immune-mediated injury (111, 128, 129).
An allele of HSP70 has been linked to the human leukocyte antigen (HLA) haplo-
types that are associated with increased susceptibility to SLE in a Spanish popula-
tion (34). The pathogenic significance of this finding awaits further clarification.

Increasing evidence implicates HSP 70, HSP 90, and HSP 110 members as po-
tential antigen targets for cell-mediated inflammation (3, 111, 129). Recent inves-
tigations also support a possible role for HSP 47, 65, 70, and 90 in the pathogenesis
of some forms of glomerulopathy (122, 123, 125). Work by Warr and colleagues
suggests that cross reactivity between microbial and human HSPs may stimulate
a T cell subset that has been implicated in the pathogenesis of progressive IgA
nephritis in humans (124). In this study, a peptide derived from mycobacterial HSP
65 stimulated T cell proliferation. In experimental nephritis caused by injection of
Thy1.1 antigen (a form of mesangioproliferative GN), HSP 90 appears to regulate
the response to pro-mitogenic signals required for mesangial cells to enter G1 or
to progress through the S-phase (120). Mesangial cell proliferation is an important
precursor of glomerular dysfunction.

In sum, molecular chaperones may mediate glomerular injury via immune and
non-immune mediated mechanisms. Some renal chaperones appear likely to alter
the acute infiltration of pro-inflammatory cells, perhaps by inadvertently mimick-
ing an invading micro-organism (124). Other chaperones modulate cell prolifer-
ation, determine the susceptibility to pro-apoptotic stimuli, or the propensity to
undergo irreversible fibrosis.

Chronic, Progressive Renal Failure

Although the mechanism is debated, many forms of renal injury can lead to pro-
gressive renal failure even in the absence of the initial insult (130). Many factors
have been proposed to cause progressive renal injury including hemodynamic
stress, phosphate deposition, hyperlipidemia, reactive oxygen species, immune-
mediated injury resulting from increased ammoniagenesis, and dysregulation of
apoptosis leading to unrelenting cellular dropout (49). One or more of these in-
sults could be responsible for the progressive interstitial and glomerular fibrosis
that are important hallmarks of chronic, progressive renal failure. In aging rats, in-
creased accumulation of both HSP 47 (131) and HSP 72 (132) have been observed,
suggesting that progressive loss of renal function is associated with an increased
burden of non-native proteins.

The expression of HSP 47, a collagen-binding protein, in glomeruli with seg-
mental sclerosis paralleled the expression of type I, III, and IV collagen in rats
subjected to subtotal nephrectomy (131). These rats showed glomerulosclerosis
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with marked tubulointerstitial damage, as well as interstitial fibrosis with increased
collagen and HSP 47 deposition in glomeruli, tubular epithelial cells, and inter-
stitial cells of remnant rat kidneys (131). Administration of HSP 47 antisense
oligodeoxynucleotides suppressed the collagen deposition and attenuated the his-
tologic manifestations of the glomerular fibrosis (131). HSP 47 is unlikely to act
alone in processing collagen. GRP 78 and GRP 94 cooperate with the HSP 47-
procollagen complex in metabolically stressed cells, preventing the proper folding
and release of procollagen (133).

Renal Transplantation

Removal, storage, and re-implantation of a kidney are accompanied by a vari-
able degree of ischemic damage (87, 134). Ischemic renal injury is an important
cause of early graft failure (135) and may increase the likelihood of subsequent
episodes of acute or chronic rejection (134). Although therapy for acute allograft
rejection with active inflammation is often effective, no treatment presently exists
for chronic progressive rejection associated with progressive interstitial fibrosis.
Accumulation of HSP 47 in the interstitium positively correlates with interstitial
fibrosis in allografts with chronic progressive dysfunction (136). A novel HSP
(45 kDa or HJD-2) was recently identified in human kidney biopsies that exhibited
either acute or chronic rejection. In contrast, normal, pretransplant kidneys and
transplanted kidneys without histologic evidence of rejection (acute or chronic)
showed no HJD-2 (137). These investigators suggest that this novel HSP might be
an antigen against which cytotoxic T cells that mediate acute rejection are directed.
However, HSP 60 was also increased in allografts with rejection (137), making it
difficult to ascribe causality to a specific HSP. Although expression of molecular
chaperones after a nonlethal ischemic insult is assumed to confer cytoprotection,
these same chaperones expressed on the cell surface may mark cells for apoptosis
(29) or precipitate cell infiltration and inflammation (3, 129).

Osmotic Stress

Over a decade ago, Cohen and colleagues observed a brisk induction of HSP 72 in
renal MDCK cells subjected to physiologic, hyperosmolar stress (138). The tran-
scriptional response to hyperosmotic stress has been recently reviewed (139, 140).
Renal medullary stress is a consequence of physiological changes in extracellular
osmolality associated with normal fluctuations in water, urea, and ion excretion.
Cells acutely exposed to hypo- or hyperosmolar stress exhibit changes in cytoskele-
tal organization (141), membrane transporter activities (142), and stimulation of
the cell death pathway (139, 143). To compensate for this adverse physiologic sit-
uation, kidney medullary cells constitutively overexpress molecular chaperones,
with an increasing gradient of molecular chaperones evident from cortex to medulla
(139, 144).

Intracellular cytoprotective osmolytes (i.e., sorbitol, betaine, inositol, taurine,
and glycerophosphorylcholine) are accumulated during hypertonic stress (142),
although the rate of their accumulation is relatively slow (145). Similarly, cells
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exposed to a hypo-osmolar environment respond by dumping organic osmolytes,
inhibiting intracellular osmolyte production, and increasing their degradation (141).
These adaptive mechanisms are likely inadequate to protect renal cells from rapid
changes in extracellular osmolality. Thus constitutive expression of inducible HSPs
or their rapid induction with severe osmotic stress could fill an acute cytoprotective
gap (146, 147).

Several osmotic-sensitive molecular chaperones have been implicated as poten-
tial cytoprotectants, including HSP 25, 60, 72, 78, 110, 200, and the osmotic stress
protein OSP 94. Expression of HSP 25 and HSP 72 is enhanced in vivo in rat inner
medulla in response to dehydration-mediated hyperosmolar stress (139, 143, 148).
In addition, molecular chaperones of 46, 60, 78, and 200 kDa have been identified
in renal epithelial cells subjected to hypertonic NaCl (147). More recently, OSP
94, a member of the HSP 110 family, was found to be highly expressed in murine
inner medulla in vivo (149). In the dehydrated mouse, increased medullary ex-
pression of OSP 94 and HSP 110 were observed, emphasizing the importance of
these proteins in the adaptive response to hyperosmotic stress (144).

Studies of renal cells in culture yielded comparable results. After exposure
to hypertonic NaCl, murine inner medullary collecting duct (IMCD3) cells in-
creased HSP 72 mRNA levels prior to increases in either OSP 94 or HSP 110
(144). The relatively rapid induction of HSP 70 in response to increased osmolal-
ity suggests that this chaperone is a critical, but not sufficient, adaptive response
to perturbations in protein conformation. An assay for ATP-dependent binding to
an unfolded protein identified additional hyperosmotic stress-inducible proteins
including mitochondrial HSP 70, as well as 60 and 200 kDa proteins (147). Fur-
thermore, preconditioning with heat stress, a well-established cause of protein
denaturation and inducer of heat shock proteins, protects IMCD3 cells against
subsequent osmotic stress (144). The existence of this cross tolerance suggests
that hyperosmolality and thermal stress share many key features such as protein
denaturation and refolding.

Recent work has sought to identify specific molecular chaperones responsible
for cytoprotection during hyperosmotic stress. In MDCK cells, a priming osmotic
stress correlated with protection against a more severe osmotic shock. MDCK
cells exposed to 600 mOsm NaCl were more likely to survive a subsequent urea
stress (143). Improved cell survival correlated with the accumulation of HSP 72
(as well as increased levels of betaine and glycerophosphorylcholine) but not HSP
25, suggesting that HSP 72 may mediate cytoprotection (143). Other investigators
detected constitutive expression of HSP 72 in vivo, especially in the regions of
the medulla exposed to the highest osmolality. However, in vivo water restriction
failed to elicit an induction of HSP 72 above constitutively high levels in mice
or rats in some studies (144, 145). In fact, water-restricted mice showed increased
expression of medullary OSP 94 and HSP 110, suggesting that HSP 72 may not
be the only cytoprotectant during osmolar stress (144, 145).

What is the primary stimulus for molecular chaperone induction in medullary
cells exposed to increased osmolality? In vivo, urea may be a primary stimu-
lus for inducing molecular chaperones (139, 148). This is an attractive hypothesis
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because high concentrations of urea cause protein denaturation in vitro (42). Stress
kinases appear to signal the osmotic stress response, and induction of HSP 72 ap-
pears dependent upon p38 kinase-mediated regulation of Jun N-terminal kinase
(JNK) (46). In contrast, thermal induction of HSP 72 is independent of p38 kinase
(46). Another in vitro study suggests that vasopressin activates heat shock transcrip-
tion factor (HSF), a precursor for the induction of HSP 70 (150). In this study, block-
ade of the V2 receptor prevented HSP 70 induction, suggesting that the response to
osmotic stress is renal specific and may be mediated by through the cyclic-AMP
pathway. Ultimately, osmotic stress has the potential to cause cell death. Given that
acute hyperosmolality activates stress kinases, it is not surprising that exposure
to hypertonic NaCl or urea precipitates apoptosis in inner medullary collecting
duct cells (151, 152), a process that could be modulated by the presence of HSPs.

FUTURE DIRECTIONS

In kidney, accumulation of molecular chaperones is a critical step in inducing cyto-
protection under adverse circumstances. Induction of chaperones can be achieved
experimentally using drugs, heat exposure, or molecular strategies that stimulate
overexpression of heat shock transcription factor (HSF)-specific stress proteins.
Although this preemptive approach might appear limited in most clinical settings,
many episodes of acute renal injury can be anticipated. Renal injury caused by
exposure to intravenous contrast agents or nephrotoxins (e.g., aminoglycosides,
cisplatin), surgical procedures involving cardiopulmonary bypass, and cold stor-
age of kidneys prior to organ transplantation could potentially be prevented by
pre-induction of molecular chaperones. Ultimately, induction of molecular chap-
erones or the administration of cytoprotective domains of specific chaperones could
prevent or ameliorate acute renal failure in high-risk situations. In the meantime,
appreciation of the impact of molecular chaperones on cell function has provided
a better understanding of the pathways that mediate cellular injury and survival.
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